121 research outputs found

    Genetic Mouse Models for Osteoarthritis Research

    Get PDF

    Dnmt3b ablation impairs fracture repair through upregulation of Notch pathway

    Get PDF
    We previously established that DNA methyltransferase 3b (Dnmt3b) is the sole Dnmt responsive to fracture repair and that Dnmt3b expression is induced in progenitor cells during fracture repair. In the current study, we confirmed that Dnmt3b ablation in mesenchymal progenitor cells (MPCs) resulted in impaired endochondral ossification, delayed fracture repair, and reduced mechanical strength of the newly formed bone in Prx1-Cre;Dnmt3bf/f (Dnmt3bPrx1) mice. Mechanistically, deletion of Dnmt3b in MPCs led to reduced chondrogenic and osteogenic differentiation in vitro. We further identified Rbpjκ as a downstream target of Dnmt3b in MPCs. In fact, we located 2 Dnmt3b binding sites in the murine proximal Rbpjκ promoter and gene body and confirmed Dnmt3b interaction with the 2 binding sites by ChIP assays. Luciferase assays showed functional utilization of the Dnmt3b binding sites in murine C3H10T1/2 cells. Importantly, we showed that the MPC differentiation defect observed in Dnmt3b deficiency cells was due to the upregulation of Rbpjκ, evident by restored MPC differentiation upon Rbpjκ inhibition. Consistent with in vitro findings, Rbpjκ blockage via dual antiplatelet therapy reversed the differentiation defect and accelerated fracture repair in Dnmt3bPrx1 mice. Collectively, our data suggest that Dnmt3b suppresses Notch signaling during MPC differentiation and is necessary for normal fracture repair

    Advancing herbal medicine: enhancing product quality and safety through robust quality control practices

    Get PDF
    This manuscript provides an in-depth review of the significance of quality control in herbal medication products, focusing on its role in maintaining efficiency and safety. With a historical foundation in traditional medicine systems, herbal remedies have gained widespread popularity as natural alternatives to conventional treatments. However, the increasing demand for these products necessitates stringent quality control measures to ensure consistency and safety. This comprehensive review explores the importance of quality control methods in monitoring various aspects of herbal product development, manufacturing, and distribution. Emphasizing the need for standardized processes, the manuscript delves into the detection and prevention of contaminants, the authentication of herbal ingredients, and the adherence to regulatory standards. Additionally, it highlights the integration of traditional knowledge and modern scientific approaches in achieving optimal quality control outcomes. By emphasizing the role of quality control in herbal medicine, this manuscript contributes to promoting consumer trust, safeguarding public health, and fostering the responsible use of herbal medication products

    Efficient yeast surface-display of novel complex synthetic cellulosomes

    Get PDF
    Background: The self-assembly of cellulosomes on the surface of yeast is a promising strategy for consolidated bioprocessing to convert cellulose into ethanol in one step. Results: In this study, we developed a novel synthetic cellulosome that anchors to the endogenous yeast cell wall protein a-agglutinin through disulfide bonds. A synthetic scaffoldin ScafAGA3 was constructed using the repeated N-terminus of Aga1p and displayed on the yeast cell surface. Secreted cellulases were then fused with Aga2p to assemble the cellulosome. The display efficiency of the synthetic scaffoldin and the assembly efficiency of each enzyme were much higher than those of the most frequently constructed cellulosome using scaffoldin ScafCipA3 from Clostridium thermocellum. A complex cellulosome with two scaffoldins was also constructed using interactions between the displayed anchoring scaffoldin ScafAGA3 and scaffoldin I ScafCipA3 through disulfide bonds, and the assembly of secreted cellulases to ScafCipA3. The newly designed cellulosomes enabled yeast to directly ferment cellulose into ethanol. Conclusions: This is the first report on the development of complex multiple-component assembly system through disulfide bonds. This strategy could facilitate the construction of yeast cell factories to express synergistic enzymes for use in biotechnology

    A multifunctional azobenzene-based polymeric adsorbent for effective water remediation

    Get PDF
    The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, [pi]–[pi] stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials

    Preparation of a High-Performance Catalyst Derived from Modified Lignin Carbon for the Hydrogen Evolution Reaction of Electrolyzed Water

    No full text
    Hydrogen energy is a plentiful and environmentally friendly form of secondary energy that could play a crucial role in achieving global energy sustainability. At the same time, the electrolysis of water for hydrogen production is a significant future-oriented advancement in the energy sector, whereas appropriate hydrogen evolution catalysts have always been the key to hydrogen evolution reactions. In this study, lignin was utilized as an appropriate raw material for modification in order to obtain carbon materials, which was then supported with Ru to prepare an Ru0.8@MLC catalyst. At a current density of 10 mA cm−2, the required overpotential was a mere 35.6 mV and the slope of Tafel was 31.7 mV dec−1. This study provides a feasible strategy and pathway for preparing highly efficient electrocatalysts for the hydrogen evolution reaction
    • …
    corecore